Dec. 20, 2012 ? Researchers at the Niels Bohr Institute have demonstrated that photons (light particles) emitted from light sources embedded in a complex and disordered structure are able to mutually coordinate their paths through the medium. This is a consequence of the photons' wave properties, which give rise to the interaction between different possible routes.
The results are published in the scientific journal Physical Review Letters.
The real world is complex and messy. The research field of photonics, which explores and exploits light, is no exception, and in, for example, biological systems the statistical disorder is unavoidable.
Drunken people and photons
"We work with nanophotonic structures in order to control the emission and propagation of photons. We have discovered in the meantime, that inevitable inaccuracies in the structures lead to random scattering. As a consequence, the transport of photons follow a random path -- like a drunken man staggering through the city's labyrinthine streets after an evening in the pub," explains David Garc?a, postdoc in Quantum Photonics at the Niels Bohr Institute at the University of Copenhagen.
If we continue with this analogy, then it is not certain that just because one drunken man comes home safely, then a whole crowd of drunken people spreading out from the pub will also find their way through the city's winding streets. There is no relationship between the different random travellers.
But there is when you are talking about photons. They can 'sense' each other and coordinate their travel through a material, according to new research.
"We have inserted a very small light source in a nanophotonic structure, which contains disorder in the form of a random collection of light diffusing holes. The light source is a so-called quantum dot, which is a specially designed nanoscopic light source that can emit photons. The photons are scattered in all directions and are thrown back and forth. But photons are not just light particles, they are also waves, and waves interact with each other. This creates a link between the photons and we can now demonstrate in our experiments that the photons' path through the material is not independent from the other photons," explains David Garc?a.
Spectroscopy of complex materials
By analysing the path of the photons through the medium valuable insight is potentially gained about microscopic complex structures.
"The method could be a new way to measure the spatial properties of complex disordered materials, like biological tissue, and since the light sources are very small, you will be able to place them without destroying the material and you have the potential for very high spatial resolution," explains David Garc?a.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by University of Copenhagen, via EurekAlert!, a service of AAAS.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- Pedro Garc?a, S?ren Stobbe, Immo S?llner, Peter Lodahl. Nonuniversal Intensity Correlations in a Two-Dimensional Anderson-Localizing Random Medium. Physical Review Letters, 2012; 109 (25) DOI: 10.1103/PhysRevLett.109.253902
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
lakers trade ann arbor news ides of march elizabeth smart nick young south dakota state long beach state
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.